Health Effect Considerations of HABS

Donna Hill, DVM

Toxicity Assessment Division

National Health and Environmental Effects Research Lab

Office of Research and Development

US EPA

RTP, NC

Exposure to Cyanobacteria and Cyanotoxins

Recreational Activities (most common)

- Food
- Drinking water
- Algal dietary supplements
- Medical procedures (dialysis)-rare

Symptoms of Exposure

Cyanotoxins	Acute Health Effects in Humans	Most common cyanobacteria producing toxin
Microcystin-LR	Abdominal pain, Headache, Sore throat, Vomiting and nausea, Dry cough, Diarrhea, Blistering around the mouth, and Pneumonia, possible cancer promotor	Microcystis, Anabaena, Nodularia, Planktothrix, Fischerella, Nostoc, Oscillatoria, and Gloeotrichia
Cylindrospermopsin	Fever, Headache, Vomiting, Bloody diarrhea	Cylindrospermopsis, Aphanizomenon, Umezakia, Anabaena, Lyngbya, Rhaphidiopsis
Anatoxin-a group	Tingling, burning, numbness, drowsiness, incoherent speech, salivation, respiratory paralysis leading to death*	Chrysosporum (Aphanizomenon), Cuspidothrix, Cylindrospermopsis, Cylindrospermum, Dolichospermum, Microcystis, Oscillatoria, Planktothrix
Lipopolysaccharides (LPS)	Irritant	All gram (-) bacteria and variable amounts in cyanobacteria

Routes of Exposure	Recreational	Drinking Water	Food/Dietary Supplement	Occupational	Medical
Ingestion	~	~	~	~	
Inhalation	~			~	
Dermal	✓			\	
Intravenous					~

- Severity of health effects depends on toxin(s), dose, route of exposure, and individual's health status.
- Children, elderly, and possibly people with pre-existing health conditions could be at increased risks.

Exposure Guidelines for Cyanobacteria and Cyanotoxins

EPA Draft Recreational Ambient Water Quality Criteria (AWQC) for Cyanotoxins

Microcystins	Cylindrospermopsin	
4 μg/L ^{a,b}	8 μg/L ^{a,b}	

- a) Swimming Advisory: not to be exceeded on any day
- b) Recreational Criteria for Water Body Impairment: not exceeded more than 10 percent of days per recreational season up to one calendar year.

EPA Drinking Water Health Advisory (10 Day)

Cyanotoxin	Bottle-fed infants and pre-school children	School-age children and adults
Microcystins	0.3 μg/L	1.6 μg/L
Cylindrospermopsin	0.7 μg/L	3 μg/L

Lower health advisory values for younger children based on higher water intake per body weight for children 5 years old and younger.

WHO Guidelines for Cyanotoxins

$1.0 \, \mu g/L \, MC-LR$

- Lifetime exposure
- In water with cyanobacterial cells, this value applies to the total free and cell-bound toxin

Kansas Health Advisories for Recreational Water

Public Health Watch-

- •A hazardous condition <u>may</u> exist
- •Signs posted at public access locations
- •Water may be unsafe for humans/animals
 - Discourage water contact
 - •4-20 μg/L toxin

O

•Cyanobacteria cell counts 80,000-250,000cells/ml

Public Health Warning-

- Conditions are unsafe
- •Signs posted at all public access locations
 - •Water contact should not occur
 - •All conditions of Public Health Watch remain in effect
 - •Toxin ≥20µg/L

or

•Cyanobacteria cell counts ≥250,000 cells/ml

Case Example- Giannuzzi et al 2011, Argentina Lake

- Healthy 19 year old man on jet ski treaded water in an intense Microcystis bloom x 2 hours
- Water conditions 4 hours post-exposure: MC-LR 48.6µg/L and cyanobacteria cell concentration ~34,000 cells/ml
- Man experienced 3 week illness with gastrointestinal stage—pulmonary stage—liver toxicity

Challenges to Identification of Causative Toxin

Patient

- Evidence of cyanobacteria or toxin in bloodstream, stomach contents, or feces could be difficult to detect if medical attention delayed
- Early health effects are often nonspecific and may not be linked to HAB exposure
- Specific toxin identification requires advanced techniques (applies to environmental aspect too)

Environmental

 Cyanobacteria and toxin content are dynamic in respect to time and space in the body of water and within the water column; delayed sampling may represent a different environment

Schematic illustration of scum-forming potential changing the cyanotoxin risk from moderate to very high (After Falconer et al., 1999)

If You Are Exposed

- Shower immediately
- Seek medical attention if symptoms develop and let healthcare provider know about HAB exposure
- No "point-of-use" test to confirm exposure
- Supportive care is only treatment- no antidote

Toxicology Research on Cyanotoxins and Challenge of Health Guidelines and Advisories

- Human data is gold standard, but limited and confounded with other variables
- Mammalian data with appropriate route of exposure
 - Best controlled study type
 - Oral studies limited by cost of toxin

Majority of existing research done using inappropriate route of exposure *in vivo* (intraperitoneal to conserve toxin) or cell culture assays (*in vitro*)- helps elucidate mechanism of toxicity, but *interpretation unusable for human exposure*

Chernoff Lab Comparative Toxicity of Eight Microcystin (MC) Congeners

MC-LR MC-LW

MC-RR MC-YR

MC-WR MC-LY

MC-LA MC-LF

- Given orally by gavage to mice
- Samples taken 24 hours after single dose
- Study repeated with intraperitoneal (i.p.) dose
- To do oral and i.p. studies on two demethylated forms of MC-RR common in Europe

Chernoff Lab Comparative Toxicity of Eight Microcystin (MC) Congeners

Relative Toxicity

By oral or injection route:

Most toxic: MC-LA > MC-LR

Least toxic: MC-RR

Study Data

Example of comparison of Microcystin-LR, -LA, -LW, -LY, -RR given orally to mice measured by response of elevated liver enzyme as a marker of liver injury

b. ALT Dose Response - Females

Take Home Points:

- -Public Education $\sqrt{}$ (addressed by Kansas HAB program)
- -Monitoring, Reporting and Response $\sqrt{\text{(addressed by Kansas HAB program)}}$
- -More cyanotoxin animal toxicology data for guidance with human health
- -Communication of experiences from Kansas and Region 7 (and beyond) to EPA ORD
- and our laboratory to help guide research priorities for HABS

Contacts:

Neil Chernoff, PhD Lead Toxicologist

Chernoff.neil@epa.gov

Donna Hill, DVM Veterinarian

Hill.donna@epa.gov

Johnsie Lang, PhD Environmental Chemist

Lang.johnsie@epa.gov